464 research outputs found

    The relative fitness of drug-resistant Mycobacterium tuberculosis: a modelling study of household transmission in Peru.

    Get PDF
    The relative fitness of drug-resistant versus susceptible bacteria in an environment dictates resistance prevalence. Estimates for the relative fitness of resistant Mycobacterium tuberculosis (Mtb) strains are highly heterogeneous and mostly derived from in vitro experiments. Measuring fitness in the field allows us to determine how the environment influences the spread of resistance. We designed a household structured, stochastic mathematical model to estimate the fitness costs associated with multidrug resistance (MDR) carriage in Mtb in Lima, Peru during 2010-2013. By fitting the model to data from a large prospective cohort study of TB disease in household contacts, we estimated the fitness, relative to susceptible strains with a fitness of 1, of MDR-Mtb to be 0.32 (95% credible interval: 0.15-0.62) or 0.38 (0.24-0.61), if only transmission or progression to disease, respectively, was affected. The relative fitness of MDR-Mtb increased to 0.56 (0.42-0.72) when the fitness cost influenced both transmission and progression to disease equally. We found the average relative fitness of MDR-Mtb circulating within households in Lima, Peru during 2010-2013 to be significantly lower than concurrent susceptible Mtb If these fitness levels do not change, then existing TB control programmes are likely to keep MDR-TB prevalence at current levels in Lima, Peru

    Trajectories of body mass index and waist circumference in four Peruvian settings at different level of urbanisation: the CRONICAS Cohort Study

    Get PDF
    BACKGROUND: Studies have reported the incidence/risk of becoming obese, but few have described the trajectories of body mass index (BMI) and waist circumference (WC) over time, especially in low/middle-income countries. We assessed the trajectories of BMI and WC according to sex in four sites in Peru. METHODS: Data from the population-based CRONICAS Cohort Study were analysed. We fitted a population-averaged model by using generalised estimating equations. The outcomes of interest, with three data points over time, were BMI and WC. The exposure variable was the factorial interaction between time and study site. RESULTS: At baseline mean age was 55.7 years (SD: 12.7) and 51.6% were women. Mean follow-up time was 2.5 years (SD: 0.4). Over time and across sites, BMI and WC increased linearly. The less urbanised sites showed a faster increase than more urbanised sites, and this was also observed after sex stratification. Overall, the fastest increase was found for WC compared with BMI. Compared with Lima, the fastest increase in WC was in rural Puno (coefficient=0.73, P<0.001), followed by urban Puno (coefficient=0.59, P=0.001) and Tumbes (coefficient=0.22, P=0.088). CONCLUSIONS: There was a linear increase in BMI and WC across study sites, with the greatest increase in less urbanised areas. The ongoing urbanisation process, common to Peru and other low/middle-income countries, is accompanied by different trajectories of increasing obesity-related markers

    La construcción simbólica de una capital. Planeamiento, imagen turística y desarrollo urbano en Barcelona a principios de siglo XX

    Get PDF
    La producción iconográfica de las ciudades constituye una documentación imprescindible para los estudios de historia urbana pero, a la vez, son elementos con un gran valor interpretativo de los procesos de control urbanístico y, por tanto, de las estrategias de intervención asociadas a intereses de tipo económico, social y cultural. Estas producciones, en forma de vistas y cartografía urbana, son todavía más apreciables cuando son el resultado de la correlación entre los momentos álgidos de la planificación urbanística, el desarrollo urbano real y la creación de un relato de apropiación de la ciudad. La representación iconográfica posee una capacidad comunicativa más efectiva que la derivada del planeamiento, por lo que elabora una construcción simbólica de una realidad urbana con fuerte persistencia en el imaginario cultural. El caso de la ciudad de Barcelona y la cartografía turística de principios de siglo XX es un ejemplo intenso e interesante de esta relación

    Metallochaperones Are Needed for Mycobacterium tuberculosis and Escherichia coli Nicotinamidase-Pyrazinamidase Activity.

    Get PDF
    Mycobacterium tuberculosis nicotinamidase-pyrazinamidase (PZAse) is a metalloenzyme that catalyzes conversion of nicotinamide-pyrazinamide to nicotinic acid-pyrazinoic acid. This study investigated whether a metallochaperone is required for optimal PZAse activity. M. tuberculosis and Escherichia coli PZAses (PZAse-MT and PZAse-EC, respectively) were inactivated by metal depletion (giving PZAse-MT-Apo and PZAse-EC-Apo). Reactivation with the E. coli metallochaperone ZnuA or Rv2059 (the M. tuberculosis analog) was measured. This was repeated following proteolytic and thermal treatment of ZnuA and Rv2059. The CDC1551 M. tuberculosis reference strain had the Rv2059 coding gene knocked out, and PZA susceptibility and the pyrazinoic acid (POA) efflux rate were measured. ZnuA (200 μM) achieved 65% PZAse-EC-Apo reactivation. Rv2059 (1 μM) and ZnuA (1 μM) achieved 69% and 34.3% PZAse-MT-Apo reactivation, respectively. Proteolytic treatment of ZnuA and Rv2059 and application of three (but not one) thermal shocks to ZnuA significantly reduced the capacity to reactivate PZAse-MT-Apo. An M. tuberculosis Rv2059 knockout strain was Wayne positive and susceptible to PZA and did not have a significantly different POA efflux rate than the reference strain, although a trend toward a lower efflux rate was observed after knockout. The metallochaperone Rv2059 restored the activity of metal-depleted PZAse in vitro Although Rv2059 is important in vitro, it seems to have a smaller effect on PZA susceptibility in vivo. It may be important to mechanisms of action and resistance to pyrazinamide in M. tuberculosis Further studies are needed for confirmation.IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide's mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient's individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat

    Clinical evaluation of tuberculosis viability microscopy for assessing treatment response

    Get PDF
    Background. It is difficult to determine whether early tuberculosis treatment is effective in reducing the infectiousness of patients' sputum, because culture takes weeks and conventional acid-fast sputum microscopy and molecular tests cannot differentiate live from dead tuberculosis. Methods. To assess treatment response, sputum samples (n = 124) from unselected patients (n = 35) with sputum microscopy–positive tuberculosis were tested pretreatment and after 3, 6, and 9 days of empiric first-line therapy. Tuberculosis quantitative viability microscopy with fluorescein diacetate, quantitative culture, and acid-fast auramine microscopy were all performed in triplicate. Results. Tuberculosis quantitative viability microscopy predicted quantitative culture results such that 76% of results agreed within ±1 logarithm (r(S) = 0.85; P < .0001). In 31 patients with non-multidrug-resistant (MDR) tuberculosis, viability and quantitative culture results approximately halved (both 0.27 log reduction, P < .001) daily. For patients with non-MDR tuberculosis and available data, by treatment day 9 there was a >10-fold reduction in viability in 100% (24/24) of cases and quantitative culture in 95% (19/20) of cases. Four other patients subsequently found to have MDR tuberculosis had no significant changes in viability (P = .4) or quantitative culture (P = .6) results during early treatment. The change in viability and quantitative culture results during early treatment differed significantly between patients with non-MDR tuberculosis and those with MDR tuberculosis (both P < .001). Acid-fast microscopy results changed little during early treatment, and this change was similar for non-MDR tuberculosis vs MDR tuberculosis (P = .6). Conclusions. Tuberculosis quantitative viability microscopy is a simple test that within 1 hour predicted quantitative culture results that became available weeks later, rapidly indicating whether patients were responding to tuberculosis therapy

    Natural ventilation for the prevention of airborne contagion.

    Get PDF
    BACKGROUND: Institutional transmission of airborne infections such as tuberculosis (TB) is an important public health problem, especially in resource-limited settings where protective measures such as negative-pressure isolation rooms are difficult to implement. Natural ventilation may offer a low-cost alternative. Our objective was to investigate the rates, determinants, and effects of natural ventilation in health care settings. METHODS AND FINDINGS: The study was carried out in eight hospitals in Lima, Peru; five were hospitals of "old-fashioned" design built pre-1950, and three of "modern" design, built 1970-1990. In these hospitals 70 naturally ventilated clinical rooms where infectious patients are likely to be encountered were studied. These included respiratory isolation rooms, TB wards, respiratory wards, general medical wards, outpatient consulting rooms, waiting rooms, and emergency departments. These rooms were compared with 12 mechanically ventilated negative-pressure respiratory isolation rooms built post-2000. Ventilation was measured using a carbon dioxide tracer gas technique in 368 experiments. Architectural and environmental variables were measured. For each experiment, infection risk was estimated for TB exposure using the Wells-Riley model of airborne infection. We found that opening windows and doors provided median ventilation of 28 air changes/hour (ACH), more than double that of mechanically ventilated negative-pressure rooms ventilated at the 12 ACH recommended for high-risk areas, and 18 times that with windows and doors closed (p < 0.001). Facilities built more than 50 years ago, characterised by large windows and high ceilings, had greater ventilation than modern naturally ventilated rooms (40 versus 17 ACH; p < 0.001). Even within the lowest quartile of wind speeds, natural ventilation exceeded mechanical (p < 0.001). The Wells-Riley airborne infection model predicted that in mechanically ventilated rooms 39% of susceptible individuals would become infected following 24 h of exposure to untreated TB patients of infectiousness characterised in a well-documented outbreak. This infection rate compared with 33% in modern and 11% in pre-1950 naturally ventilated facilities with windows and doors open. CONCLUSIONS: Opening windows and doors maximises natural ventilation so that the risk of airborne contagion is much lower than with costly, maintenance-requiring mechanical ventilation systems. Old-fashioned clinical areas with high ceilings and large windows provide greatest protection. Natural ventilation costs little and is maintenance free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion
    corecore